
TEITagger: Raising the standard for digital texts
to facilitate interchange with linguistic software

Peter M. Scharf

Abstract: For several years, members of the International Sanskrit Com-
putational Linguistics Consortium working to facilitate interchange
between digital repositories of Sanskrit texts, and digital parsers and
syntactic analyzers have recognized the need to standardize refer-
ence to particular passages in digital texts. XML has emerged as
the most important standard format for document structure and data
interchange, and TEI as the most important standard for the XML
markup of textual documents. TEI provides methods to precisely de-
scribe divisions in texts from major sections to individual morphemes,
and to associate various versions with each other. Responsible text
archives, such as TITUS and SARIT, have adopted the TEI stan-
dard for their texts. After a workshop to train doctoral candidates
at the Rashtriya Sanskrit Sansthan to mark-up texts in accordance
with TEI in May 2017, the Sanskrit Library developed software to
semi-automate the process with extensive use of regular expressions
and meter-identification software, and is currently marking-up all of
its texts using the TEITagger. The result will be a large repository
of digital Sanskrit texts that can furnish text to the Sanskrit Heritage
parser and the University of Hyderabad’s parser and syntax analyzer
to allow passages parsed and analyzed for dependency structure to be
interlinked with their originals.

1 XML and TEI
In the age in which oral productions and hand-written documents were the
predominant mode of expressing knowledge and exchanging information,
each individual articulation or manuscript had its own format determined
by the author and heard or read by other individuals. In the age of the print
medium, presses produced multiple copies of individual productions which

229



230 Scharf

could be widely distributed to numerous other individuals. At the outset of
the digital age, as Scharf and Hyman (2011: 2) and Scharf (2014: 16) noted,
presentation of individual productions imitated the print medium. Docu-
ment creators and software engineers created works to present knowledge
to human readers. As Goldfarb (1990) noted, unfortunately the tendency
persists as “their worst habits” as if their production were meant only for
human eyes, and had no need to coordinate with software developed by
others. In 1969, however, Goldfarb, Mosher, and Lorie at International
Business Machines Corporation (IBM) developed the Generalized Markup
Language (GML), so called based on their initials (Goldfarb 1990: xiv), to
mark up documents in terms of the inherent character of their constituents,
such as prose, header, list, table, etc., to enable software to format the docu-
ments variously for various devices, such as printers and display screens, by
specifying a display profile without changing the document itself (Wikipedia
contributors 2017). Over the next decade, Goldfarb and others developed
the international Standard Generalized Markup Language (SGML), Interna-
tional Standards Organization (ISO) document 8897, to describe documents
according to their structural and other semantic elements without reference
to how such elements should be displayed. Thus in contrast to the Hyper-
Text Markup Language (HTML) which was designed to specify the display
format of a text, SGML separates the inherent structure of a document from
how it is presented to human readers and “allows coded text to be reused
in ways not anticipated by the coder” (Goldfarb 1990: xiii).

The eXtensible Markup Language (XML) is an open-source meta-
language consisting of a stripped-down version of SGML formally adopted
as a standard by the World Wide Web Consortium (W3C) in February 1998.
In the couple of decades since, XML has become the single most important
standard format for document structure and data interchange. Wüstner,
Buxmann, and Braun (1998) noted, “XML has quickly emerged as an es-
sential building block for new technologies, offering a flexible way to create
and share information formats and content across the Internet, the World
Wide Web, and other networks.” Benko (2000: 5) noted, “XML is expected
to become the dominant format for electronic data interchange (EDI).” A
few years ago, Zazueta (2014) noted, “XML emerged as a front runner to
represent data exchanged via APIs early on;” whereas “Javascript Object
Notation (JSON), emerged as a standard for easily exchanging Javascript
object data between systems.” He continues,



TEITagger 231

API designers these days tend to land on one of two formats
for exchanging data between their servers and client developers
- XML or JSON. Though a number of different formats for data
have been designed and promoted over the years, XML’s built
in validation properties and JSON’s agility have helped both
formats emerge as leaders in the API space.”

Benko (2000: 2) also noted that two of the seven benefits the W3C defines
for establishing XML include the following:

• Allow industries to define platform-independent protocols for the ex-
change of data.

• Deliver information to user agents in a form that allows automatic
processing after receipt.

As a simple metalanguage consisting of just seven characters (<, >, /,
=, ", ', ␣), XML allows users to develop markup languages of an unlimited
variety. In order to facilitate interchange of textual documents, the Text
Encoding Initiative (TEI) developed a community-based standard for the
representation and encoding of texts in digital form. The TEI Guidelines for
Electronic Text Encoding and Interchange define and document a markup
language for representing the structural, renditional, and conceptual features
of texts. They focus (though not exclusively) on the encoding of documents
in the humanities and social sciences, and in particular on the representation
of primary source materials for research and analysis. The Text Encoding
Initiative also makes the Guidelines and XML schema that validate them
available under an open-source license. TEI has become the most important
standard for the XML markup of textual documents. Hence to facilitate
the interchange, cross-reference, and unanticipated use of digital Sanskrit
text, it is imperative that digital archives of Sanskrit texts make their texts
available encoded in XML in accordance with the TEI Guidelines.

2 Sanskrit digital archives and the use of TEI
A number of organizations and individuals, such as GoogleBooks, The Mil-
lion Books Project, Archive.org, the Digital Library of India, and the Vedic
Reserve at Maharishi International University, have made images and PDF
documents of Sanskrit printed texts available, and a number of libraries,



232 Scharf

such as the University of Pennsylvania in Philadelphia and the Raghunath
Temple Sanskrit Manuscript Library in Jammu, have made images of their
Sanskrit manuscripts available. Such productions have greatly facilitated
access to primary source materials; yet that access is limited exclusively to
being read by a human being. Although Jim Funderburk developed software
to search headwords in a list and highlight that headword in digital images
of dictionary pages, and Scharf and Bunker developed software to approxi-
mate the location of passages in digital images of Sanskrit manuscripts, the
results of such software are also merely displays for a human reader. PDFs
do not facilitate automatic processing after receipt.

Numerous groups and individuals of various backgrounds have created
digital editions of Sanskrit texts and made them available on portable digital
storage media and the Web. As opposed to image data, these documents
consist of machine-readable character data. Most of these are structured
in simple data structures, such as lines of text numbered with a composite
chapter-section-line number, in text files or directly in HTML files. These
documents are intended to permit access by a human to passages by search-
ing as well as for sequential reading. While the various providers of dig-
ital text are too numerous to mention, one site has emerged as a central
registry. The Göttingen Register of Electronic Texts in Indian Languages
(GRETIL) lists about eight hundred such Sanskrit texts. These texts are
openly available for download so that others may subject them to various
sorts of linguistic processing such as metrical, morphological, and syntactic
analysis. As great a service as making these texts available in digital form is,
GRETIL exerted minimal discipline on its early contributors so that there is
great variability in the specification of metadata. In many cases, the source
edition of the text is unknown. In addition, each contributor was free to
structure the document as he wished, so there is great variability in the
manner of formatting verse and enumerating lines.

Although GRETIL offers the texts in a few common standard encod-
ings including UTF8 Unicode Romanization, there is variability in how the
contributors employed capitalization, encoded diphthongs versus contiguous
vowel sequences, punctuation, etc. Texts available from other sources use
Devanāgarī Unicode, different ASCII meta-encodings, or legacy pre-Unicode
fonts. Scharf and Hyman (2011) and Scharf (2014) have already dealt with
the issues regarding character encoding. Here I address higher-lever text
and document structure encoding.

Even by 2006, at the start of the International digital Sanskrit library



TEITagger 233

integration project, the Thesaurus Indogermanischer Text- und Sprachma-
terialien (TITUS), which contributed its texts for integration with dictio-
naries produced by the Cologne Digital Sanskrit Dictionaries project via
morphological analysis software produced by Scharf and Hyman at Brown,
had begun partially using TEI tags to mark up the structure of its texts
and metadata. Over the past four years, the Search and Retrieval of Indic
Texts project (SARIT) marked up all of the texts which had previously been
made available in various ad hoc formats at the Indology website, and some
twenty additional texts, in a consistent encoding in accordance with the TEI
standard. The site (http://sarit.indology.info) currently houses fifty-
nine Sanskrit TEI documents made available under a Creative Commons
license and provides clear instructions for how to mark up Sanskrit texts in
accordance with TEI.

3 TEI training
At the bequest of the SARIT project, in an initial attempt to spur large-
scale encoding of Sanskrit texts in accordance with the TEI standard, I
conducted a one-week e-text tutorial at the Rashtriya Sanskrit Sansthan’s
Jaipur campus in February 2010. While several participants produced TEI
versions of small portions of texts, the workshop failed to instigate the col-
laboration of technical expertise and abundant Sanskrit-knowing labor that
SARIT had hoped. In May 2017, however, I was invited by the Rashtriya
Sanskrit Samsthan to conduct a two-week TEI workshop at its Ganga Nath
Jha campus in Allahabad. There I trained twenty Sanskrit doctoral can-
didates in how to encode texts and catalogue manuscripts in accordance
with TEI Guidelines. In an additional week I worked with these students
to encode twenty Sanskrit works in accordance with TEI, ten of which were
delivered complete in the next month.

During the workshop, I trained students to analyze the structure of a
plain text data-file with Sanskrit text in numbered lines or verses and to
construct regular expressions to recognize strings of text with fixed num-
bers of syllables. We constructed regular expressions to recognize a few
common verse patterns and had the students submit the verses found to
the Sanskrit Library’s meter analyzer produced and described by Melnad,
Goyal, and Scharf (2015a,b). Once we knew that verses with a certain num-
ber of syllables were typically in a certain metrical pattern, we constructed

http://sarit.indology.info


234 Scharf

replacement expressions to transform the recognized pattern to well-formed
TEI line group elements (lg) with subordinate line (l) and segment ele-
ments (seg) for each verse quarter (pāda) and to insert type, analysis, and
metrical pattern attributes (type, ana, met) in the (lg) tag. The replace-
ment expressions inserted the enumeration provided by the source document
in (n) and (xml:id) attributes in the (lg) tag, and typed and lettered the
verse quarters as well. Where complex numbers compiled the numbers of
text divisions, subdivisions, and passages within subdivisions, the regular
expression placed just the last in a separate group, and the replacement ex-
pression inserted that number in the value of the n attribute while putting
the whole number in the value of the xml:id attribute. For example, the
regular expression and replacement expression shown in Figure 1 was pri-
marily responsible for transforming the following verse of the Bhagavadgītā
(in Sanskrit Library ASCII encoding) to the well-structured TEI (lg) ele-
ment with its subsidiaries shown in Figure 2:

06024070a ApUryamARam acalapratizWaM; samudram ApaH
praviSanti yadvat
06024070c tadvat kAmA yaM praviSanti sarve; sa SAntim Ap-
noti na kAmakAmI

I say, “primarily responsible,” because in fact the leading zeroes on the
number of the verse were captured by this regular expression so that ‘070’
was inserted in the value of the n attribute; an additional regular expression
removed them.

Now one will notice that the original text document conveniently indi-
cated the break between the two verse quarters in each line of a Triṣṭubh
verse by a semicolon and space. This indication allowed the regular expres-
sion to group just the text of each verse quarter without leading or trailing
spaces. However, no such indication was given for the break between verse
quarters in an Anuṣṭubh verse because there is frequently no word-break at
the pāda boundary of the ubiquitous śloka. One would want to preserve
the information whether or not there is a word break there, yet would not
want a pāda to begin with a space. Hence after a regular expression inserted
each verse quarter in a seg element, subsequent regular expressions moved
leading spaces, where found, from the beginning of the second seg to the
end of the first and set the second verse quarter on a separate line. Thus
the first verse of the Bhagavadgītā,



TEITagger 235

Figure 1
Regular expression and replacement expression to transform a plain text

verse in Triṣṭubh meter to TEI



236 Scharf

Figure 2
Bhagavadgītā 2.70 in Triṣṭubh meter

06023001a Darmakzetre kurukzetre samavetA yuyutsavaH
06023001c mAmakAH pARqavAS cEva kim akurvata saMjaya

was marked up in TEI and reformatted as shown in Figure 3 with each verse
quarter in a separate seg element.

I also trained students in the workshop to compose regular expressions to
capture the speaker lines such as Dhr�tarāṣṭra uvāca that introduce speeches
and to compose replacement expressions to put these in speaker elements.
Similarly, I taught them to mark up prose sentences and paragraphs in s
and p elements, to put speeches in sp elements, to insert head and trailer
elements, to locate and capture enumeration of divisions, to insert div el-
ements, to insert the whole in body and text elements, to insert page and
line break elements, and to mark up bibliography. I then had them insert
these elements in a teiHeader template in the TEI element, and to validate
the complete TEI document. Figure 4 shows the first short speech of the
Bhagāvadgītā with the speaker element in the context of parent sp, div,
body, and text opening tags. Let me remark that guidelines for how to
mark up Sanskrit text in accordance with TEI are conveniently available on
the SARIT website.1

1http://sarit.indology.info/exist/apps/sarit-pm/docs/
encoding-guidelines-simple.html

http://sarit.indology.info/exist/apps/sarit-pm/docs/encoding-guidelines-simple.html
http://sarit.indology.info/exist/apps/sarit-pm/docs/encoding-guidelines-simple.html


TEITagger 237

Figure 3
Bhagavadgītā 1.1 in Anuṣṭubh meter

Figure 4
TEI markup of a speech in the context of division, body, and text elements



238 Scharf

4 TEITagger software
After the experience of teaching Sanskrit students with minimal technical
literacy to transform a plain text document to well-structured XML in ac-
cordance with TEI in a series of well-ordered steps, it occurred to me that
I could also teach a machine to do the same. Ralph Bunker, the technical
director of the Sanskrit Library, had previously developed software called
Linguistic Mapper at my request so that I could compile a driver file that
contained a sequence of regular and replacement expressions that imple-
mented historical sound change rules between a proto-language and a de-
scendant language. We created TEITagger by modifying Linguistic Mapper
to process a series of such sets of regular and replacement expressions that
matched specified numbers of syllables in certain arrangements that approx-
imated metrical patterns. By creating a regular expression that counted the
correct number of syllables per pāda we could convert every such verse to
proper TEI markup in lg elements, with each line in an l element, and each
pāda in a seg element. At the same time we could number the verse in
an n attribute, insert an xml:id, and insert the presumed meter name and
metrical pattern in a type attribute. The meter name and metrical pattern
in the first version of TEITagger was presumed on the basis of the sylla-
ble count, not automatically checked against a pattern of light and heavy
syllables.

We then revised TEITagger to include the feature of submitting a seg-
ment of text that matched a certain regular expression to our meter identi-
fication software that would identify the meter of a whole verse by checking
the passage against specified patterns of light and heavy syllables as defined
by classical metrical texts. If a match is found TEITagger version 2 au-
tomatically inserts the meter name, general type, and metrical pattern in
type, ana, and met attributes of the lg element. To simplify the regular
expression formulation in the command driver file for this program, we com-
posed macros to represent vowels, consonants, syllables, syllable codas, and
the typical terms used in the lines that introduce speeches. These macros
are shown in Figure 5.

To further simplify testing segments of text for any meter type with any
number of syllables, we introduced an iterative loop command and iteration
variable in version 3. Thus, for example, with a command that consists of
the single regular expression and replacement expression shown in Figure
6, TEITagger can evaluate every segment of text in a file with four verse



TEITagger 239

quarters each consisting of n syllables per verse quarter, where the variable
n is tested in order from 28–1 thereby testing for all of the verses with the
same number of syllables per verse quarter. Metrical patterns with the same
number of syllables per verse quarter include all 468 of the samavr�tta and
upajāti types as well as some of the ardhasamavr�tta and viṣamavr�tta type.
Similar expressions can be composed to match verses with unequal numbers
of syllables per verse quarter. Such metrical patterns include those of the
ardhasamavr�tta type and mātrāvr�tta type as well as irregular variations of
more regular patterns. The current version (17) also passes verse lines and
individual pādas to the meter analyzer to detect their patterns in irregular
verses.

Figure 5
TEITagger macros



240 Scharf

Figure 6
TEITagger iterative command to match verses with four pādas with n
syllables per pāda, where an arbitrary range can be specified for n.



TEITagger 241

The TEITagger driver file also accepts commands to insert header and
footer files so that one can add the opening XML file tags, open and close
body and text tags, open and close TEI tags, and a teiHeader. Finally,
TEITagger will pretty print the file if it is a valid XML file.

5 Philological use of the TEITagger software
Metrical analysis of Vedic, epic, and classical Sanskrit texts is not new.
For instance, metrical analysis of the Mahābhārata has produced interesting
results that bear on the critical composition of the text and its history.
Edgerton (1939) distinguished regular versus irregular varieties of Triṣṭu-
bh and Jagatī meters that were significantly divided between the Virāṭa-
parvan and Sabhāparvan respectively and thereby demonstrated separate
composition and probably subsequent insertion of the Virāṭaparvan in the
text of the Mahābhārata. He also described several regular patterns in the
hypermetric and hypometric irregular varieties based upon the location of
the caesura.

Fitzgerald (2006) reported the results of analyzing a database of the
Triṣṭubh and Jagatī verses he assembled over the past couple of decades.
He analyzed these metrical patterns into five segments: initial and final
syllables, and three sets of three syllables each: the opening, break, and
cadence. He identified three standard varieties of Triṣṭubh: (1) a regular
Upajāti consisting of the alternating pādas of Indravajrā and Upendravajrā,
(2) Śālinī, and (3) Vātormī; and a standard variety of Jagatī: an Upajāti
consisting of alternating pādas of Vaṁśasthā and Indravaṁśā. Fitzgerald
(2009) isolated two measurable variables: (1) the degree of uniformity
among the pādas of the Triṣṭubh stanzas, and (2) the set of major Triṣṭubh
features that were eliminated in the creation of the classical standard triṣṭu-
bh. He isolated passages on the basis of runs of Triṣṭubh and Jagatī verses
and measured the uniformity within verses in these passages to attempt to
locate discontinuities that might signal different periods of composition of
the passages. Fitzgerald (2004) argued, “if we are able to make reasonable
arguments about historical fissures in the text, we thereby enrich our under-
standing of the text’s possible meanings …by distinguishing multiple voices,
dialogical tension, and innovation within the otherwise synchronic, unitary,
received text.” In his careful unpublished study of the episode of the dice
match, he was able to counter the conclusions of Söhnen-Thieme (1999),



242 Scharf

and to conclude that “this whole episode, the Upajāti passage of chapter
60 in which Duḥśāsana drags Draupadī into the sabhā by the hair, is likely
later than most or all of the rest of this episode.”

Work of the sort that Edgerton and Fitzgerald have done with careful
evaluation of statistics gathered with great effort over a long time could be
vastly simplified and assisted by the automation provided by TEITagger.
After testing TEITagger version 2 on the Bhagavadgītā, within a week, I
tagged the entire critical edition of the Mahābhārata, including those with
irregular patterns such as those with hypermetric or hypometric pādas. A
driver file of nearly a thousand lines individually matched every possible
combination of the syllable counts per pāda, triple-line and single line verses
as well as the normal double-line verses. For example, a separate set of a
regular expression and its replacement expression targets triple-line Triṣṭu-
bh verses with a hypermetric first pāda, another targets such verses with
a hypermetric second pāda, etc. The driver file assumed that such deviant
metrical patterns ought to be classified under a certain type despite the
failure of the meter analyzer to find a regular type. The task preceded and
inspired the development of our iteration command and commands to send
verse lines and pādas to the meter analyzer described in the previous section.
The driver file I developed to tag the Bhāgavatapurāṇa with these features
added consists of only 318 lines.

TEITagger version 2 tagged 73,436 verses and 1,057 prose sentences in
386 paragraphs. The verses include 68,860 Anuṣṭubhs, 2,970 Triṣṭubhs,
431 Jagatī, 322 Indravajrā, 0 Upendravajrā, 496 of the standard Upajāti
variety alternating the two preceding, 88 Śālā, 78 Vāṇī (other Upajātis),
31 Aparavaktra (an ardhasamavr�tta meter), 22 Praharṣiṇī, 16 Rucirā, 9
Mālinī, 4 Vasantatilakā, 4 Puṣpitāgrā, 1 Śārdūlavikrīḍita, 1 Halamukhī, 1
Āryāgīti (a type of Āryā), 1 mixture of half Kāmakrīḍā and half Kāmu-
kī, and a hundred unidentified. The unidentified metrical patterns include
for instance, 1 mixture of half Kāmukī and half unidentified, 1 mixture of
a deviant pāda with subsequent Anuṣṭubh, jagatī, and Triṣṭubh pādas, as
well as 98 other uninvestigated unidentified patterns.

The results of TEITagger version 2 are presented in Table 1 in compar-
ison with some of the results Fitzgerald (2009) reported. One can see that
there is a minor discrepancy of one passage in the enumeration of the prose
passages. The cause of this discrepancy needs to be investigated. Yet oth-
erwise there is astonishing consistency in the enumeration of the prose and
verse passages. There is a discrepancy of just two verses of the Anuṣṭubh



TEITagger 243

meter. The discrepancy of 41 Triṣṭubh/Jagatī verses and 52 fancy meters
is probably largely due to TEITagger’s incorrect assumption that a number
of irregular meters with 11–12 syllables per pāda were of this type rather
than fancy metrical patterns. For if the meter analyzer failed to identify a
verse, TEITagger relied on syllable count alone to classify it.

Using TEITagger version 17 with the more refined feature of sending
verse lines and quarters to the meter analyzer, and with some revision of
the meter analyzer itself, I reevaluated the metrical patterns of the Mahā-
bhārata. In this version, I made no assumptions about the conformity of
deviant patterns to regular types; instead, where the meter analyzer failed
to find a match for a verse, I permitted it to seek a match of each line of
the meter, and failing to find a match for a line, to seek a match for each
pāda in the line. Where lines or pādas within a verse were identified as the
same, the metrical information was combined so that along with a single
type classification for the verse only the deviant lines or pādas are classified
separately. Labels consisting of the meter names in SLP1 for each different
meter found within a verse are separated by a forward slash in the value of
the type-attribute of the lg-element that contains the verse in the TEI file.
These labels are preceded by letters indicating the pādas so labeled.

Table 2 shows the numbers of verses with one to six metrical identifi-
cations for the verse as a whole or parts of the verse individually. Table
3 shows the meters recognized. Column three of Table 3 shows the num-
ber of the meter indicated in column one that was recognized as a verse.
Column four shows the number of additional sets of double lines recognized
within triple-line meters. Column five shows the number of lines recognized
in verses not recognized as verses or sets of double lines. Column six shows
the number of pādas recognized in lines not recognized as lines. The first
line of each section divided by double horizontal lines tallies the numbers
of that general metrical type. Rows beginning with Upajāti in bold in the
Triṣṭubh and Jagatī sections tally the numbers for the Upajāti type patterns
listed in subsequent rows within the same section. The Upajāti numbers are
included in the tally for the section as a whole as well. At the bottom of
the table, the row labeled Identified in bold summarizes the total number of
verses, additional pairs of lines, additional lines, and additional verse quar-
ters recognized. The row labeled No type shows the number of verses not
recognized before querying the meter analyzer regarding lines and pādas,
and the total number of pādas that remain unidentified. The pādas that
remain unidentified are provided with the label no_type within the value



244 Scharf

Table 1
Metrical and non-metrical passages in the Mahābhārata identified by

TEITagger v. 2
compared with those identified by Fitzgerald

passage type syllables/pāda TEITagger Fitzgerald
2009

passages 73,822 73,821
prose
paragraphs 386 385
sentences 1,057
verse 73,436 73,436
Anuṣṭubh 8 68,860 68,858
Triṣṭubh/Jagatī 11–12 4,385 4,426
Triṣṭubh 11 2,970
Indravajrā 11 322
Upendravajrā 11 0
Upajāti 11 662
Indravajrā/Upendravajrā 11 496
Śālā 11 88
Vāṇī 11 78
Jagatī 12 431
Fancy meters 100 152
Halamukhī 9 1
Aparavaktra 13/12 31
Puṣpitāgrā 12/13 4
Praharṣiṇī 13 22
Rucirā 13 16
Vasantatilakā 14 4
Mālinī 15 9
Kāmakrīḍā/Kāmukī 15/16 1
Śārdūlavikrīḍita 19 1
Āryāgīti 7 caturmātrās + 2 1
unidentified 100



TEITagger 245

of the type-attribute in the TEI file. No lines or line pairs are so labeled
because if they are unidentified their pādas are sent to the meter analyzer
individually for analysis. The row labeled Total in bold shows the total
number of verses in the Mahābhārata in column three but in column six just
the total number of pādas analyzed individually.

Table 2
Mixed metrical patterns in the Mahābhārata identified by TEITagger v. 17

type identified not fully total
single 70,242 3,194 73,436
mixed 689 2,505 3,194
double 85 4 89
triple 468 994 1,462
quadruple 129 1,451 1,580
quintuple 5 23 28
sextuple 2 33 35

TEITagger version 17 found matches for each of the fourteen varieties
of Triṣṭubh Upajāti patterns and the several Jagatī Upajāti patterns named
separately. It also found several additional samavr�tta metrical patterns for
lines and verse quarters not found by analyzing whole verses. Rows headed
by these meter names show blanks in the columns for verses and lines where
no verses or lines of that type were found. These initial results of applying
TEITagger to analyze the metrical patterns in theMahābhārata demonstrate
its capacity to reveal detailed information about a massive work and to mark
up the results in a way that permits computational compilation so that these
results may be presented to scholars in ways that may inspire further insight.

Table 3
Metrical patterns in the Mahābhārata identified by TEITagger v. 17

meter type syllables/ verse 2/3 lines line quarter
pāda

Anuṣṭubh 8 68,360 10 521 633
Anuṣṭubh3 8 68,322 10 518 610
Pramāṇikā 8 38 0 1 22
Vidyunmālā 8 2 1



246 Scharf

meter type syllables verse 2/3 lines line quarter
pāda

Vibhā 8 6
Haṁsaruta 8 1
Triṣṭubh 11 1,355 62 970 3,252
Indravajrā 11 171 3 271 941
Upendravajrā 11 94 0 174 805
Vātormī 11 1 30 0 597
Rathoddhatā 11 5 0 0 0
Śālinī 11 38 0 0 909
Upajāti 11 1,046 29 525 0
Bhadrā 11 68 2 167 0
Haṁsī 11 90 0 188 0
Kīrti 11 114 3 0 0
Vāṇī 11 98 4 0 0
Mālā 11 73 1 0 0
Śālā 11 82 0 170 0
Māyā 11 50 3 0 0
Jāyā 11 50 1 0 0
Bālā 11 82 5 0 0
Ārdrā 11 68 3 0 0
Rāmā 11 62 1 0 0
R�ddhi 11 85 3 0 0
Buddhi 11 67 2 0 0
Siddhi 11 57 1 0 0
Jagatī 12 411 4 94 343
Vaṁśasthā 12 359 3 73 181
Indravaṁśā 12 1 0 5 95
Bhujaṅgaprayāta 12 3 0 0 0
Kāmadattā 12 4
Vaiśvadevī 12 3 55
Śruti 12 2 8
Upajāti 12 48 0 16 0
Śaṅkhanidhi 12 1 0 2 0
Padmanidhi 12 2 0 14 0
Vaṁśamālā 12 45 1 0 0
Fancy 116 0 37 32



TEITagger 247

meter type syllables verse 2/3 lines line quarter
pāda

Halamukhī 9 1 0 0 0
Śuddhavirāj 10 1
Aparavaktra 13/12 27 0 3 0
Puṣpitāgrā 12/13 33 0 3 0
Praharṣiṇī 13 8 0 1 1
Rucirā 13 28 0 11 28
Prabhavatī 13 1
Vasantatilakā 14 3 0 0 1
Praharaṇakalikā 14 1 0
Mālinī 15 9 0 0 0
Śārdūlavikrīḍita 19 1 0 0 0
Upagīti 5cm+l+1cm+g 6 0 29 0
Āryāgīti 7cm+gg 0 0 1 0
Identified 70,242 76 1,622 4,267
No type 3,194 4,297
Total 73,436 8,564

6 Communication between TEI files and linguistic
software

As mentioned in section 1, one of the principal benefits of encoding Sanskrit
texts using TEI XML is to fulfill the need to coordinate directly, without
human intervention, with software developed by others, possibly in ways
not anticipated. In particular, by encoding Sanskrit texts in TEI we antic-
ipate coordinating a large repository of digital Sanskrit texts with parsers
and syntax analyzers, such as the Sanskrit Heritage parser and the Uni-
versity of Hyderabad’s .sMa;sa;a;Da;n�a;a. TEI provides robust standardized methods
to coordinate various versions of texts and to refer to particular divisions
and segments within a text so that parsed and syntactically analyzed pas-
sages may be interlinked with their originals. Naturally, the highest lev-
els of coordination between versions would require standardized identifica-
tion of the repository that houses the original file from which a passage
was taken and submitted to a linguistic analysis tool on another site. An
attribute value pair such as simply repository='sl', or more officially
repository='US-RiPrSl' using the International Standard Identifier for



248 Scharf

Libraries and Related Organizations (ISIL), ISO 15511, might identify the
Sanskrit Library as the repository. Obviously standardized identification
of the file within the repository is required, either by collection and item
identifiers or by filename. These identifiers should be interpretable pro-
grammatically as a URL, or be a URL directly provided with a submis-
sion. For example, if I submit the first verse of the unanalyzed text of
the Mahābhārata to the Sanskrit Heritage parser I might provide the URL
http://sanskritlibrary.org/texts/tei/mbh1.xml with my submission.

A second level of standardized identification is required to identify the
type of analysis. When the Sanskrit Library analyzed the TITUS archive’s
texts for inclusion in 2006, it discovered a surprising variety in the degree and
type of analysis of sandhi. Some of these encoding practices can be specified
in the encoding description of a document. However, standard designation
of various degrees of analysis is needed to coordinate versions. At the least,
one might consider standard designation for the types of analysis of Sanskrit
texts described in Table 4. For clarity, it is strongly recommended that these
different degrees of analysis be located in separate files, not combined in a
single file. TEI provides simple means of coordinating such versions by
synchronizing element identifiers (xml:id).

Once a file containing the version of a text with a specific degree of analy-
sis is identified, standardized reference to particular sections and passages is
required. TEI provides machine-readable methods for declaring the element
used and the structure of references within two elements of the teiHeader:

• tagsDecl
• refsDecl

The tagging declaration may be used to document the usage of specific tags
in the text and their rendition.2 Figure 7 shows the tagsDecl element used
for the Sanskrit Library’s TEI edition of the critical edition of the Mahā-
bhārata. Because the value of the partial attribute is specified as false, the
tags listed as values of the gi attribute of the tagUsage elements are all the
elements and the only elements that occur under the text element. The lg,
l, and seg elements are used to mark up verses as shown in figures 2, 3,
and 4, in the last of which are shown also the use of the body, div, sp, and
speaker elements. The p and s elements are used to mark up paragraphs

2See the TEI P5 guidelines at http://www.tei-c.org/release/doc/tei-p5-doc/en/
html/HD.html#HD57, and http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
ref-tagsDecl.html

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD57
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-tagsDecl.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD57
http://sanskritlibrary.org/texts/tei/mbh1.xml
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-tagsDecl.html


TEITagger 249

Table 4
Degrees of analysis of Sanskrit texts

1. continuous text (saṁhitā-pāṭha)
a. with breaks only where permitted in Devanāgarī script, i.e. only

after word-final vowels, visarga or anusvāra
b. with breaks where permitted in Roman script, i.e. after conso-

nants as well
c. with breaks where permitted in Roman script with designation

immediately following characters representing sounds that result
from single replacement sandhi at word boundaries

2. sandhi-analyzed text (pada-pāṭha)
a. with word final visarga throughout, without designation of com-

pound constituents
b. distinguishing visarga originating in final s from visarga from final

r
c. with designation (but not analysis) of compound constituents as

permitted in Devanāgarī script, i.e. after constituent-final vowels,
visarga or anusvāra

d. with designation (but not analysis) of compound constituents as
permitted in Roman script, i.e. after constituent-final consonants
as well

e. with designation (but not analysis) of compound constituents as
permitted in Roman script, with designation immediately follow-
ing characters representing sounds that result from single replace-
ment sandhi at constituent boundaries

f. with analysis of sandhi between compound constituents as well
3. morphologically analyzed text
4. lexically and morphologically analyzed text
5. syntactically analyzed text

a. dependency structure
b. phrase structure



250 Scharf

and sentences in prose. The numbers listed as values of the occurs attribute
in the tagUsage elements indicate the number of occurrences of the element
named in the value of the gi attribute. The numbers shown are those for the
Svargārohaṇaparvan. Those mentioned as values of the selector attribute
of the rendition element with xml:id='skt' are all the elements and the
only elements that render Sanskrit text in SLP1 to be transcoded to Unicode
Roman, Devanagari, or another Indic Unicode encoding for redisplay. These
elements provide all that is necessary to extract Sanskrit text from the
encoding for display in HTML, and for submission as a unit to metrical,
morphological and syntactic analysis software. The attribute values of the
elements listed in the rendition element with xml:id='sktat' lists all the
attributes and the only attributes whose values are Sanskrit text in SLP1 to
be transcoded. These attribute values are Sanskrit terms that might be used
to display menus in an HTML display to select divisions such as parvan, and
adhyāya.

The reference declaration describes the reference system used in the
text.3 TEI offers the possibility of describing the pattern of canonical ref-
erences formally in a manner amenable to machine processing. A regular
expression describing the pattern of the canonical reference is paired with a
replacement expression that describes the path to the attributes that con-
tain the referenced numbers (n attributes of div and lg elements in verse in
the Mahābhārata, and of p, and s in prose). Figure 8 shows the refsDecl
element of the Sanskrit Library’s TEI edition of the Svargārohaṇaparvan.
The pattern shown in the matchPattern attribute of the first cRefPattern
element describes a canonical reference to any verse quarter in the Mahā-
bhārata. The three sets of digits separated by periods refer to the parvan,
adhyāya, and verse; the letter refers to the pāda, for example, 6.24.70a refers
to the first pāda of the seventieth verse of the twenty-fourth adhyāya of the
sixth parvan shown in Figure 2. (The 24th adhyāya of that parvan is the
second in the Bhagavadgītā.) The first of the two cRefPattern elements
gives a replacement expression that matches a path that has verses directly
as children of a div element; the second, one that has verses as children
of an intervening sp element within an adhyāya. Subsequent cRefPattern
elements describe shorter references to whole verses, adhyāyas, and parvans.
These elements and attributes directly provide an unambiguous method to

3See the TEI P5 Guidelines at http://www.tei-c.org/release/doc/tei-p5-doc/en/
html/HD.html#HD54, and http://www.tei-c.org/release/doc/tei-p5-doc/en/html/
ref-refsDecl.html

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD54
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-refsDecl.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/ref-refsDecl.html
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/HD.html##HD54


TEITagger 251

Figure 7
The tagsDecl element in the Sanskrit Library’s TEI edition of the

Svargārohaṇaparvan of the Mahābhārata



252 Scharf

resolve canonical references to particular passages. Yet, processed in the op-
posite direction, from the replacement path to the match expression, the ref-
erences provide a means to compose canonical references from n attributes.

Once a standard system of exact references to specific passages in un-
analyzed continuous text has been adopted, reference to various versions
of analyzed passages are easily constructed by specifying in addition the
degree of analysis described in Table 4. One method of doing this in a
TEI document would be to specify the degree of analysis as a value of the
ana attribute of the text element. Another would be for archives to add a
standard addition to the filename.

Linguistic software that produces TEI output would add elements sub-
ordinate to those containing text in the TEI document that contains the
continuous text. A document that contains analyzed sandhi but no further
analysis would insert each word (pada), including compounds (samasta-pa-
da), in a w element. A document that contains compound analysis would
insert the lexical constituents of compounds in a w element subordinate to
the compound’s w element. Although the types of analysis described in Ta-
ble 4 do not envision tagging non-lexical morphemes such as the infix a and
suffix ti in the verb gacchati, such morphemes would be inserted in an m
element. TEI provides attributes that may be used for lexical and mor-
phological analysis of each word in a w element. The stem of the word is
made the value of the lemma attribute. We have chosen to make the lexical
identifier a value of the type attribute and the morphological identifier a
value of the subtype attribute. Figure 9 shows our TEI mark up of the
sandhi analysis of the first verse of the Bhagavadgītā, MBh. 6.23.1, and
Figure 10 shows our TEI mark up of the lexical and morphological analysis
of the same verse. Where authors deliberately compose passages that are
amenable to more than one analysis (śleṣa), alternative analyses — whether
of verses, lines, verse quarters, prose passages, or individual words — may
be analyzed in separate files where, in order to permit coordination, they
may be supplied with the identical division numbers and xml:ids as their
unanalyzed passages and the preferred analysis.

As a result of standardized coordination of markup and reference be-
tween Sanskrit text archives and Sanskrit computational software, HTML
displays showing the unanalyzed version of a verse might be able to include
a set of links to various analyzed versions for the convenience of students
and scholars of Sanskrit. Conversely, displays of the results of analysis of a
passage might also provide links to the unanalyzed source.



TEITagger 253

Figure 8
The refsDecl element in the Sanskrit Library’s TEI edition of the

Svargārohaṇaparvan of the Mahābhārata



254 Scharf

Figure 9
TEI mark up of the sandhi analysis of MBh. 6.23.1, the first verse of the

Bhagavadgītā



TEITagger 255

Figure 10
TEI mark up of the lexical and morphological analysis of MBh. 6.23.1, the

first verse of the Bhagavadgītā



References
Benko, Matthew. 2000. Understanding XML. Tech. rep. url: https : / /

faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%
20-%20Understanding%20XML%20draft%20TN.pdf.

Edgerton, Franklin. 1939. “The epic triṣṭubh and its hypermetric varieties.”
Journal of the American Oriental Society 59.2: 159–74. doi: www.jstor.
org/stable/594060.

Fitzgerald, James L. 2004. “A meter-guided analysis and discussion of the
dicing match of the Sabhāparvan of the Mahābhārata.”

—. 2006. “Toward a database of the non-anuṣṭubh verses of the Mahābhā-
rata.” In: Epics, Khilas, and Purāṇas: continuities and ruptures. Pro-
ceedings of the Third Dubrovnik International Conference on the San-
skrit Epics and Purāṇas. Ed. by Petteri Koskikallio. Zagreb: Croatian
Academy of Sciences and Arts, pp. 137–48.

—. 2009. “A preliminary study of the 681 triṣṭubh passages of of the Mahā-
bhārata.” In: Epic undertakings: proceedings of the 12th World Sanskrit
Conference. Ed. by Robert Goldman and Muneo Tokunaga. Delhi: Moti-
lal Banarsidass, pp. 95–117.

Goldfarb, Charles F. 1990. The SGML Handbook. Oxford: Clarendon Press.
Melnad, Keshav, Pawan Goyal, and Peter M. Scharf. 2015a. “Identification

of meter in Sanskrit verse.” In: Sanskrit syntax: selected papers presented
at the seminar on Sanskrit syntax and discourse structures, 13–15 June
2013, Université Paris Diderot, with a bibliography of recent research by
Hans Henrich Hock. Providence: The Sanskrit Library, pp. 325–46.

—. 2015b. “Updating Meter Identifying Tool (MIT).” In: (Bangkok, June 28–
July 2, 2015). Paper presented at the 16th World Sanskrit Conference,
Bankok.

Scharf, Peter M. 2014. “Linguistic issues and intelligent technological solu-
tions in encoding Sanskrit.” Document numérique 16.3: 15–29.

Scharf, Peter M. and Malcolm D. Hyman. 2011. Linguistic issues in encoding
Sanskrit. Delhi: Motilal Banarsidass.

Söhnen-Thieme, Renate. 1999. “On the composition of the Dyūtaparvan of
the Mahābhārata.” In: Composing a Tradition. Proceedings of the First
Dubrovnik International Conference on the Sanskrit Epics and Purāṇas,

256

https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
https://faculty.darden.virginia.edu/GBUS885-00/Papers/PDFs/Benko%20-%20Understanding%20XML%20draft%20TN.pdf
http://dx.doi.org/www.jstor.org/stable/594060
http://dx.doi.org/www.jstor.org/stable/594060


Bibliography 257

August 1997. Ed. by Mary Brockington and Peter Schreiner. Zagreb:
Croatian Academy of Sciences and Arts, pp. 139–54.

Wikipedia contributors. 2017. IBM Generalized Markup Language. In:
Wikipedia: The Free Encyclopedia. Wikipedia.

Wüstner, E., P. Buxmann, and O. Braun. 1998. “XML — The Extensible
Markup Language and its Use in the Field of EDI.” In: Handbook on
architectures of information systems. Ed. by P. Bernus, K. Mertins, and
G. Schmidt. International Handbooks on Information Systems. Berlin,
Heidelberg: Springer.

Zazueta, Rob. 2014. API data exchange: XML vs. JSON. How do you spell
API? url: https://www.mashery.com/blog/api-data-exchange-
xml-vs-json.

https://www.mashery.com/blog/api-data-exchange-xml-vs-json
https://www.mashery.com/blog/api-data-exchange-xml-vs-json

	TEITagger Raising the standard for digital texts to facilitate interchange with linguistic software

