
A user-friendly tool for metrical analysis of Sanskrit
verse

Shreevatsa Rajagopalan

Abstract: This paper describes the design and implementation of a
tool that assists readers of metrical verse in Sanskrit (and other
languages/literatures with similar prosody). It is open-source, and
available online as a web application, as a command-line tool and as a
software library. It handles both varṇavṛtta and mātrāvṛtta metres. It
has many features for usability without placing strict demands on its
users. These include allowing input in a wide variety of transliteration
schemes, being fairly robust against typographical or metrical errors
in the input, and “aligning” the given verse in light of the recognized
metre.
This paper describes the various components of the system and its
user interface, and details of interest such as the heuristics used in the
identifier and the dynamic-programming algorithm used for displaying
results. Although originally and primarily designed to help readers,
the tool can also be used for additional applications such as detecting
metrical errors in digital texts (its very first version identified 23 errors
in a Sanskrit text from an online corpus), and generating statistics
about metres found in a larger text or corpus. These applications are
illustrated here, along with plans for future improvements.

1 Introduction

1.1 Demo
As a software tool is being discussed, it seems best to start with a
demonstration of a potential user interaction with the tool. Suppose I wish
to learn about the metre of the following subhāṣita (which occurs in the
Pratijñāyaugandharāyaṇa attributed to Bhāsa):

113

114 Rajagopalan

kāṣṭhād agnir jāyate mathya-mānād-
bhūmis toyaṃ khanya-mānā dadāti |
sotsāhānāṃ nāstyasādhyaṃ narāṇāṃ
mārgārabdhāḥ sarva-yatnāḥ phalanti ||

Then I can visit the tool’s website, http://sanskritmetres.appspot.
com, enter the above verse (exactly as above), and correctly learn that it
is in the metre Śālinī. More interestingly, suppose I do not have the verse
correctly: perhaps I am quoting it from memory (possibly having misheard
it, and unaware of the line breaks), or I have found the text on a (not very
reliable) blog, or some errors have crept into the digital text, or possibly I
just make some mistakes while typing. In such a case, possibly even with
an unreasonable number of mistakes present, I can still use the tool in the
same way. Thus, I can enter the following error-ridden input (which, for
illustration, is encoded this time in the ITRANS convention):

kaaShThaad agni jaayate
mathyamaanaad bhuumistoya khanyamaanaa /
daati sotsaahaanaaM naastyasaadhyaM
naraaNaaM maargaabdhaaH savayatnaaH phalantiihi //

Here, some syllables have the wrong prosodic weight (laghu instead of
guru and vice-versa), some syllables are missing, some have been introduced
extraneously, not a single line of the input is correct, and even the total
number of syllables is wrong. Despite this, the tool identifies the metre
as Śālinī. The output from the tool, indicating the identified metre, and
highlighting the extent to which the given verse corresponds to that metre,
is shown in Figure 1. The rest of this paper explains how this is done, among
other things.

1.2 Background
A large part of Sanskrit literature, in kāvya, śāstra and other genres, is in
verse (padya) rather than prose (gadya). A verse in Sanskrit (not counting
some modern Sanskrit poets’ experimentation with “free verse” and the like)
is invariably in metre.

Computer tools to recognize the metre of a Sanskrit verse are not
new. A script in the Perl programming language, called sscan, written
by John Smith, is distributed among other utilities at the http://bombay.

http://bombay.indology.info
http://sanskritmetres.appspot.com
http://sanskritmetres.appspot.com

Metrical analysis of Sanskrit verse 115

..

Figure 1
A screenshot of the output from the tool for highly erroneous input.

Despite the errors, the metre is correctly identified as Śālinī. The guru
syllables are marked in bold, and the deviations from the expected metrical

pattern (syllables with the wrong weight, or missing or superfluous
syllables) are underlined (and highlighted in red).

http://bombay.indology.info
http://bombay.indology.info

116 Rajagopalan

indology.info website, and although the exact date is unknown, the
timestamp in the ZIP file suggests a date of 1998 or earlier for this file (Smith
1998?). In fact, this script, only 61 lines long (38 source lines not including
comments and description) was the spark of inspiration that initiated the
writing of the tool being described in the current paper, in 2013. Other
software or programs include those by Murthy (2003?), by A. Mishra (2007)
and by Melnad, Goyal, and P. M. Scharf (2015). A general introduction to
metre and to Sanskrit prosody is omitted in this paper for reasons of space,
as the last of these papers (Melnad, Goyal, and P. M. Scharf 2015) quite
excellently covers the topic.

Like these other tools, the tool being discussed in this paper recognizes
the metre given a Sanskrit verse. It is available in several forms: as a web
application hosted online at http://sanskrit-metres.appspot.com, as a
commandline tool, and as a Python library; all are available in source-code
form at https://github.com/shreevatsa/sanskrit. It is being described
here for two reasons:

1. It has some new features that I think will be interesting (see
section 1.4), some of which distinguish it from other tools. The
development of this tool has thrown up a few insights (see Section 4)
which may be useful to others who would like to develop better tools
in future.

2. A question was raised about this tool (P. Scharf 2016), namely:

“An open source web archive of metrically related soft-
ware and data can be found at https://github.com/
shreevatsa/sanskrit with an interface at http://sanskritmetres.
appspot.com/. The author and contributors to this archive
and data were unknown at the time and not included in our
literature review. No description of the extent, comprehen-
siveness, and effectiveness of the software has been found.”

I took this as encouragement that such a description may be desirable
/ of interest to others.

1.3 The intended user
The tool can be useful for someone trying to read or compose Sanskrit verses,
and for someone checking a text for metrical errors. In other words, the tool

https://github.com/shreevatsa/sanskrit
http://sanskrit-metres.appspot.com
https://github.com/shreevatsa/sanskrit
http://bombay.indology.info
http://bombay.indology.info
https://github.com/shreevatsa/sanskrit
http://sanskritmetres.appspot.com/
http://sanskritmetres.appspot.com/

Metrical analysis of Sanskrit verse 117

can be used by different kinds of users: a curious learner, an editor working
with a text (checking verses for metrical correctness), a scholar investigating
the metrical signature of a text, or an aspiring poet. To make these concrete,
consider the following “user stories” as motivating examples.

• Devadatta is learning Sanskrit. He knows that Sanskrit verse is
written in metre and that this is supposed to make it easier to chant or
recite. But he knows very little about various metres, so that when he
looks at a verse, especially one in a longer metre like Śārdūla-vikrīḍitam
or Sragdharā, he cannot quickly recognize the metre. All he sees is a
string of syllables, and he has no idea where to pause (yati), how to
recite, or even where to break at pādās if they are not indicated clearly
in the text he is reading. With this tool, these problems are solved,
and he can focus on understanding and appreciating the poetry, now
that he can read it aloud in a rhythmic and melodic way and savour
its sounds.

• Chitralekha is a scholar. She works with digital texts that, though
useful to have, are sometimes of questionable provenance and do not
always meet her standards of critical editions. Errors might have
crept into the texts, and she has the idea that some instances of
scribal emendation or typographical errors (such as omitted letters,
extraneous letters, or transposed letters) are likely to cause metrical
errors as well. With this tool, she can catch a great many of them
(see Section 3). Sometimes, she is interested in questions about
prosody itself, such as: what are all the metres used in this text?
Which ones are the most common? How frequently does the poet
X use a particular “poetic licence” of scansion? What are the rules
governing Anuṣṭubh (Śloka), typically? This tool can help her with
such questions too.

• Kamban would like to write poetry, like his famous namesake. He has
a good command of vocabulary and grammar, and has some poetic
imagination, but when he writes a verse, especially in an “exotic” (to
him) metre, he is sometimes unsure whether he has got all the syllables
right. With this tool, he enters his tentative attempt, and sees whether
anything is off. He knows that the metres will soon become second-
nature to him and he will not need the tool anymore, but still he

118 Rajagopalan

wishes he could have more help—such as choosing his desired metre,
and knowing what he needs to add to his partially composed verse.

With the names of these users as mnemonics, we can say that the tool
can be used to discover, check, and compose metrical verse and facts about
them.

1.4 User-friendly features
As mentioned earlier, the tool has a number of features for easing the user’s
job:

1. It accepts a wide variety of input scripts (transliteration schemes).
Unlike most tools, it does not enforce the input to be in any particular
input scheme or system of transliteration. Instead, it accepts IAST,
Harvard-Kyoto, and ITRANS transliteration, Unicode Devanāgarī and
Unicode Kannada scripts, without the user having to indicate which
input scheme is used. The tool is agnostic to the input method used, as
it converts all input to an internal representation based on SLP1 (P. M.
Scharf and Hyman 2011). It is straightforward to extend to other
scripts or transliteration methods, such as SLP1 or other Indic scripts.

2. It is highly robust against typographical errors or metrical errors in the
verse that is input. This is perhaps the most interesting feature of the
tool, and is useful because text in the “wild” is not always error-free.

3. It can detect the metre even from partial verses—even if the user is
not aware that the verse one is looking up is incomplete.

4. Informative “display” of a verse in relation to the identified metre,
by aligning the verse to the metre using a dynamic programming
algorithm to find the best alignment.

5. Supports learning more about a metre, by pointing to other examples
of the metre, and audio recordings of the metre being recited in several
styles (where available).

6. Quick link to provide feedback (by creating an issue on GitHub),
specific to the input verse being processed on the page.

Metrical analysis of Sanskrit verse 119

Preprocessing
Metrical

(raw)
data

Build Metrical
index

IdentifyUser
input

Detect
input

scheme Transliterate
to SLP1

Input
scheme

SLP1
(phonemes) Scansion

SLP1
(with

punctuation)

Display

Metrical
signature
(pattern
lines)

List
of

metres Pretty
output

Figure 2
A “data flow diagram” of the system’s operation. The rectangles denote

different forms taken by the data; the ovals denote code that transforms (or
uses, or generates) the data.

2 How it works
This section describes how the system works. At a high level, there are the
following steps/components:

1. Metrical data, about many known metres. This has been entered into
the system.

2. Building the Index (Pre-processing): from the metrical data, various
indices are generated.

3. Detection and Transliteration: The input supplied by the user is
examined, the input scheme detected, and transliterated into SLP1.

4. Scansion: The SLP1 text (denoting a set of phonemes) is translated
into a metrical signature (a pattern of laghus and gurus).

5. Matching: The metrical signature is compared against the index, to
identify the metre (or metres).

6. Display: The user’s input is displayed to the user, appropriately re-
formatted to fit the identified metre(s) and with highlighting of any
deviations from the metrical ideal.

These steps are depicted in Figure 2, and described in more detail in the
following subsections.

120 Rajagopalan

2.1 Metrical data
This is the raw data about all the metres known to the system. They
are stored in the JSON format, so that they could be used by other
programs too. In what follows, a metrical pattern is defined as string over
the alphabet {L,G}, i.e., a sequence of symbols each of which is either L
(denoting laghu or a light syllable) or G (denoting guru or a heavy syllable).
As described elsewhere (Melnad, Goyal, and P. M. Scharf 2015), there are
two main types of metres, varṇavṛtta and mātrāvṛtta (note that (Murthy
2003) points out that the Śloka metre constitutes a third type by itself),
with the former having three subtypes:

1. samavṛtta metres, in which all four pādas of a verse have the same
metrical pattern,

2. ardhasamavṛtta metres, in which odd pādas have one pattern and even
pādas another (so that the two halves of the verse have the same
metrical pattern),

3. viṣamavṛtta metres, in which potentially all four pādas have different
metrical patterns.

Correspondingly each metre’s characteristics are indicated in this system
with the minimal amount of data necessary:

1. samavṛtta metres are represented by a list of length one (or for
convenience, simply a string), containing the pattern of each of their
pādas,

2. ardhasamavṛtta metres are represented by a list of length two,
containing the pattern of the odd pādas followed by the pattern of
the even pādas,

3. viṣamavṛtta metres are represented by a list of length four, containing
the pattern for each of the four pāas.

Additionally, with the pattern, yati can be indicated; also spaces can be
added, which are ignored. The yati is ignored for identification, but used
later for displaying information about the metre. Here are some lines, as
examples:

Metrical analysis of Sanskrit verse 121

{
...
['Śālinī', 'GGGG—GLGGLGG'],
['Praharṣiṇī', 'GGGLLLLGLGLGG'],
['Bhujaṅgaprayātam', 'LGG LGG LGG LGG'],
...
['Viyoginī', ['LLGLLGLGLG','LLGGLLGLGLG']],
...
['Udgatā', ['LLGLGLLLGL',

'LLLLLGLGLG',
'GLLLLLLGLLG',
'LLGLGLLLGLGLG']],

...
}

For mātrāvṛtta metres (those based on the number of morae: mātrās),
the constraints are more subtle, and as not every syllable’s weight is fixed,
there are so many patterns that fit each metre that it may not be efficient to
generate and store each pattern separately. Instead, the system represents
them by using a certain conventional notation, which expands to regular
expressions. This notation is inspired by the elegant notation described
in another paper (Melnad, Goyal, and P. M. Scharf 2015), and uses a
particularly useful description of the Āryā and related metres available in a
paper by Ollett Ollett (2012).

...
["Āryā", ["22 4 22", "4 22 121 22 .", "22 4 22", "4 22 1 22 ."]],

["Gīti", ["22 4 22", "4 22 121 22 ."]],
["Upagīti", ["22 4 22", "4 22 L 22 ."]],

["Udgīti", ["22 4 22", "4 22 L 22 .", "22 4 22", "4 22 121 22."]],
["Āryāgīti", [["22 4 22", "4 22 121 22 (4|2L)"]],

...

Here, 2 will be interpreted as the regular expression (G|LL) and 4 as
the regular expression (GG|LLG|GLL|LLLL|LGL) – all possible sequences
of laghus and gurus that are exactly 4 mātrās long. Note that with this
notation, the frequently mentioned rule of “any combination of 4 mātrās
except LGL (ja-gaṇa)” is simply denoted as 22, expanding to the regular
expression (G|LL)(G|LL) which covers precisely the 4 sequences of laghus
and gurus of total duration 4, other than LGL.

122 Rajagopalan

Type of metre Number
samavṛtta 1242
ardhasamavṛtta 132
viṣamavṛtta 19
mātrāvṛtta 5
Total 1398

Table 1
The number of metres “known” to the current system. Not too much

should be read into the raw numbers as a larger number isn’t necessarily
better; see Section 4.1.3 for why.

The data in the system was started with a hand-curated list of popular
metres (Ganesh 2013). It was greatly extended with the contributions
of Dhaval Patel, which drew from the Vṛttaratnākara and the work of
Mishra (A. Mishra 2007). A few metres from these contributions are yet
to be incorporated, because of reasons described in section 4.1.3. Overall,
as a result of all this, at the moment we have a large number of known
metres, shown in Table 1.

2.2 Metrical index
The data described in the previous section is not used directly by the rest
of the program. Instead, it is first processed into data structures (which we
can consider a sort of “index”) that allow for efficient lookup, even when
the number of metres is huge. These enable the robustness to errors that
is one of the most important features of the system. The indices are called
pāda1, pāda2, pāda3, pāda4, ardha1, ardha2, and full. Each of these
indices consists of an associative array (a Python dict) that maps a pattern
(a “pattern” is a string over the alphabet {L,G}) to a list1 of metres that
contain that pattern (at the position indicated by the name of the index),
and similarly an array that maps a regular expression to the list of metres
that contain it. For instance, ardha2 maps the second half of each known
metre to that metre’s name. It is at this point that we also introduce laghu-

1Why a list? Because different metres can share the same pāda, for instance. And
there can even be multiple names for the same metre. See Section 4.1.3 later.

Metrical analysis of Sanskrit verse 123

ending variants for many metres (see more in 4.1.2). Section 2.5 describes
how these indices are used.

Although this index is generated automatically and not written down in
code, the following hypothetical code illustrates some sample entries in the
ardha2 index:

ardha2_patterns = {
...
'GGGGGLGGLGGGGGGGLGGLGG': ['Śālinī'],
laghu variants for illustration.
In reality we don't add for Śālinī…
'GGGGGLGGLGLGGGGGLGGLGG': ['Śālinī'],
'GGGGGLGGLGGGGGGGLGGLGL': ['Śālinī'],
'GGGGGLGGLGLGGGGGLGGLGL': ['Śālinī'],
...

}
ardha2_regexes = {

...
"22 4 22" + "4 22 L 22 .": ['Āryā', 'Upagīti],
...

}

2.3 Transliteration
The first step that happens after users enter their input is automatic
transliteration. Detecting the input scheme is based on a few heuristics.
Among the input schemes initially supported (Devanāgarī, Kannada, IAST,
ITRANS, and Harvard-Kyoto), the detection is done as follows:

• If the input contains any Kannada consonants and vowels, treat it as
Kannada.

• If the input contains (m)any Devanāgarī consonants and vowels, treat
it as Devanāgarī. Note that this should not be applied to other
characters from the Devanāgarī Unicode block, such the daṇḍa symbol,
which are often used with other scripts too, as encouraged in the
Unicode standard.

• If the input contains any of the characters āīūṛṝḷḹṃḥṅñṭḍśṣ, treat
it as IAST.

124 Rajagopalan

• If the input matches the regular expression

aa|ii|uu|[RrLl]\^[Ii]|RR[Ii]|LL[Ii]|~N|Ch|~n|N\^|Sh|sh

treat it as ITRANS. Here, the Sh and sh might seem dangerous, but
the consonant cluster ह is unlikely in Sanskrit.

• Else, treat the input as Harvard-Kyoto.

An option to explicitly indicate the input scheme (bypassing the
automatic inference) could be added, but has not seemed necessary so far.
The input is transliterated into (a subset of) the encoding SLP1 (P. M.
Scharf and Hyman 2011), which is used internally, as it is has many
properties suitable for computer representation of Sanskrit text. While
the input is being transliterated according to the detected scheme, known
punctuation marks (and line breaks) are retained, while all “unknown”
characters that have not been programmed into the transliterator (such
as control characters and accent marks in Devanāgarī) are ignored.

The exact details of how the transliteration is done are omitted here, as
transliteration may be regarded as a reasonably well-solved problem by now.
One point worth mentioning is that there are no strict input conventions. In
other work (Melnad, Goyal, and P. M. Scharf 2015), a convention is adopted
like:

If the input text lacks line-end markers, it is assumed to be a
single pāda and to belong to the samavṛtta type of meter

Such a scheme may be interesting to explore. For now, as much as possible,
the system tries to assume an untrained user and therefore infer all such
things, or try all possibilities.

2.4 Scan
The transliteration into SLP1 can be thought of as having generated a set
of Sanskrit phonemes (this close relationship between phonemes and the
textual representation is the primary strength of the SLP1 encoding). From
these phonemes, scansion into a pattern of laghus and gurus can proceed
directly, without bothering with syllabification (however, syllabification is
still done, for the sake of the “alignment” described later in section 2.6).
The rule for scansion is mechanical: initial consonants are dropped, and

Metrical analysis of Sanskrit verse 125

each vowel is considered as a set along with all the non-vowels that follow
it before the next vowel (or end of text) is found. If the vowel is long or if
there are multiple consonants (treating anusvāra and visarga as consonants
here, for the purpose of scansion only) in this set, then we have a guru, else
we have a laghu.

The validity of this method of scansion, with reference to the traditional
Sanskrit grammatical and metrical texts is skipped in this paper, as
something similar has been treated elsewhere (Melnad, Goyal, and P. M.
Scharf 2015). However, note that this is the “purist” version of Sanskrit
scansion. There is an issue of śithila-dvitva or poetic licence, which is treated
in more detail in Section 4.3.

2.5 Identification
The core of the tool’s robust metre identification is an algorithm for trying
many possibilities for identifying the metre of the input text. Identifying
the metre given a metrical pattern (result of scansion) is done in two steps:
(1) first the input is broken into several “parts” in various ways, and then
(2) each of these parts is matched against the appropriate indices.

2.5.1 Parts

Given the metrical pattern corresponding to the input text, which may be
either a full verse, a half-verse or a single quarter-verse (pāda), we try to
break it into parts in multiple ways. One way of breaking the input, which
should not be ignored, is already given by the user, in the form of line breaks
in the input. If there are 4 lines for example, it is a strong possibility that
these are the 4 pādas of the verse. If there are 2 lines, it is possible that each
line contains two pādas. But what if there are 3 lines, or 5? Another way of
breaking the input is by counting syllables. If the number of syllables is a
multiple of 4 (say 4n), it is possible that every n syllables constitute a pāda
of a samavṛtta metre. But what if the number of syllables is not a multiple
of 4?

The solution adopted here is to consider all ways of breaking a pattern
into k parts even when its length (say l) may not be a multiple of k. Although
this would apply to any positive k, we only care about k = 4 and k = 2, so
let’s focus on the k = 4 case for illustration. In that case, suppose that the

126 Rajagopalan

length l leaves a remainder r when divided by 4, that is,

l ≡ r (mod 4), 0 ≤ r < 4

or in other words l can be written as l = 4n + r for some integer n, where
0 ≤ r < 4. Then, as ⌊l/4⌋ = n (here ⌊·⌋ denotes the “floor function”,
or integer division with rounding down), we can consider all the ways of
breaking the string of length l into 4 parts of lengths (n+a, n+b, n+c, n+d)
where a+ b+ c+ d = r (in words: we consider all ways of distributing the
remainder r among the 4 parts). For example, when r = 2, we say that a
string of length 4n+ 2 can be broken into 4 parts in 10 ways:

(n, n, n, n+ 2)

(n, n, n+ 1, n+ 1)

(n, n, n+ 2, n)

(n, n+ 1, n, n+ 1)

(n, n+ 1, n+ 1, n)

(n, n+ 2, n, n)

(n+ 1, n, n, n+ 1)

(n+ 1, n, n+ 1, n)

(n+ 1, n+ 1, n, n)

(n+ 2, n, n, n)

Similarly, there are 4 ways when r = 1, 20 ways when r = 3, and of course
there is exactly one way (n, n, n, n) when r = 0.

In this way, we can break the given string into 4 parts (in 1, 4, 10, or 20
ways) or into 2 parts (in 1 or 2 ways), either by lines or by syllables. For
instance, if we are given an input of 5 lines, then there are 4 ways we can
break it into 4 parts, by lines. What we do with these parts is explained
next.

2.5.2 Lookup/match

Once we have the input broken into the appropriate number of parts (based
on whether we’re treating it as a full verse, a half verse, or a pāda), we look up
each part in the appropriate index. For a particular index, to match against
patterns is a direct lookup (we do not have to loop through all patterns in

Metrical analysis of Sanskrit verse 127

treating input as
kind of index full verse half verse single pāda
pāda1 first part of 4 first part of 2 the full input
pāda2 second part of 4 second part of 2 the full input
pāda3 third part of 4 first part of 2 the full input
pāda4 fourth part of 4 second part of 2 the full input
ardha1 first part of 2 the full input -
ardha2 second part of 2 the full input -
full the full input - -

Table 2
What to match or look up, depending on how the input is being treated.
Everywhere in the table above, phrases like “first part of 4” mean both by
lines and by syllables. For instance, when treating the input as a full verse,

the first 1/4 part by lines and the first 1/4 part by syllables are both
matched against the pāda1 index.

the index). To match against regexes, we do indeed loop through all regexes,
which are fewer in number compared to the number of patterns. If needed,
we can trade-off time and memory here; for instance we could have indexed
a large number of instantiated patterns instead of regexes even for mātrā
metres. Note that in this way, to match an ardhasamavṛtta or a viṣamavṛtta
that has been input perfectly, we search directly for the full pattern (of the
entire verse) in the index. We do not have to run a loop for breaking a
line into pādas in all possible ways, as in (Melnad, Goyal, and P. M. Scharf
2015). Details of which indices are looked up are in Table 2.

2.6 Align/Display
The metre identifier, from the previous section, results in a list of metres
that are potential matches to the input text. Not all of them may match
the input verse perfectly; some may have been detected on the basis of
partial matches. Whatever the reason for this imperfect match (an over-
eager matching on the part of the metre identifier, or errors in the input
text), it would be useful for the user to see how closely their input matches
a given metre. And even when the match is perfect, aligning the verse to
the metre can help highlight the pāda breaks, the location of yati, and so on.

128 Rajagopalan

This is done by the tool, using a simple dynamic-programming algorithm
very similar to the standard algorithm for the longest common subsequence
problem: in effect, we simply align both the strings (the metrical pattern of
the input verse, and that of the known metre) along their longest common
subsequence.

What this means is that given two strings s and t, we use a dynamic
programming algorithm to find the minimal set of “gap” characters to insert
in each string, such that the resulting strings match wherever both have a
non-gap character (and never have a gap character in both). For example:

('abcab', 'bca'), => ('abcab', '-bca-')
('hello', 'hello'), => ('hello', 'hello')
('hello', 'hell'), => ('hello', 'hell-')
('hello', 'ohell'), => ('-hello', 'ohell-')
('abcdabcd', 'abcd'), => ('abcdabcd', 'abcd----')
('abcab', 'acb'), => ('abcab', 'a-c-b')
('abcab', 'acbd'), => ('abcab-', 'a-c-bd')

We use this algorithm on the verse pattern and the metre’s pattern,
to decide how to align them. Then, using this alignment, we display the
user’s input verse in its display version (transliterated into IAST, and with
some recognized punctuation retained). Here, laghu and guru syllables are
styled differently in the web application (styling customizable with CSS).
This also highlights each location of yati or caesura (if known and stored for
the metre), so that the user can see if their verse violates any of the subtler
rules, such as words straddling yati boundaries.

This algorithm could also be used for ranking the results, based on the
degree of match between the input and each result (metre identified).

3 Text analysis and results
As part of testing the tool (and as part of pursuing the interest in literature
and prosody that led to the tool in the first place), a large number of texts
such as from GRETIL2 were examined. Although primarily designed to help
readers, the tool can also be used to analyze a metrical text, to catch errors
or generate statistics about the metres used. In the very first version of the

2Göttingen Register of Electronic Texts in Indian Languages: and related Indological
materials from Central and Southeast Asia, http://gretil.sub.uni-goettingen.de

http://gretil.sub.uni-goettingen.de

Metrical analysis of Sanskrit verse 129

tool, the first metre added was Mandākrāntā, and the tool was run on a
text of the Meghadūta from GRETIL, the online corpus of Sanskrit texts.
This text was chosen because the Meghadūta is well-known to be entirely
in the Mandākrāntā metre, so the “gold standard” to use as a reference
to compare against was straightforward. Surprisingly, this tool successfully
identified 23 errors in the 122 verses!3 These were communicated to the
GRETIL maintainer.

Similarly, testing of the tool on other texts highlighted many errors.
Errors identified in the GRETIL text of Bhartṛhari’s Śatakatraya were
carefully compared against the critical edition by D. D. Kosambi.4 In this
text, as in Nīlakaṇṭha’s Kali-viḍambana,5 in Bhallaṭa’s Bhallaṭa-śataka,6,
and in almost all cases, the testing highlighted errors in the text, rather
than any in the metre recognizer. This constitutes evidence that the
recognizer has a high accuracy approaching 100%, though the lack of a
reliable (and nontrivial) “gold standard” hinders attaching a numeric value
to the accuracy. In the terminology of “precision and recall”, the recognizer
has a recall of 100% in the examples tested (for example, no verse that
is properly in Śārdūla-vikrīḍitam is failed to be recognized as that metre),
while the precision was lower and harder to measure because of errors in
the input (sufficiently many errors can make the verse partially match a
different metre).

After sufficiently fixing the tool and the text so that Meghadūta was
recognized as being 100% in the Mandākrāntā metre, other texts were
examined. These statistics7 confirmed that, for example, the most common
metres in the Amaruśataka are Śārdūlavikrīḍitam (57%), Hariṇī (13%) and
Śikhariṇī (10%), while those in Kālidāsa’s Raghuvamśa are Śloka, Upajāti
and Rathoddhatā. And so on. Once errors in the texts are fixed, this sort of
analysis can give insights into the way different poets use metre. It can also

3See a list of 23 errors and 3 instances of broken sandhi detected in one of the GRETIL
texts of the Meghadūta, at https://github.com/shreevatsa/sanskrit/blob/f2ef7364/
meghdk_u_errors.txt (October 2013).

4See https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/
diff-bharst_u.htm-old.patch for a list of errors found, in diff format, with comments
referring to the location of the verse in Kosambi

5https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/
diff-nkalivpu.htm.patch

6https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/
diff-bhall_pu.htm.patch

7http://sanskritmetres.appspot.com/statistics

https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/diff-nkalivpu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/diff-bhall_pu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/67251bc/texts/gretil_stats/diff-bhall_pu.htm.patch
https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/diff-bharst_u.htm-old.patch
https://github.com/shreevatsa/sanskrit/blob/7c42546/texts/gretil_stats/diff-bharst_u.htm-old.patch
https://github.com/shreevatsa/sanskrit/blob/f2ef7364/meghdk_u_errors.txt
https://github.com/shreevatsa/sanskrit/blob/08ccb91/texts/gretil_stats/diff-nkalivpu.htm.patch
http://sanskritmetres.appspot.com/statistics
https://github.com/shreevatsa/sanskrit/blob/f2ef7364/meghdk_u_errors.txt

130 Rajagopalan

be used for students to know which are the most common metres to focus
on learning, at least for a given corpus. Other sources of online texts, like
TITUS, SARIT8 or The Sanskrit Library9 could also be used for testing the
system.

4 Interesting issues and computational experience
Some insights and lessons learned as a result of this project are worth
highlighting, as are some of the design decisions that were made either
intentionally or unconsciously.

4.1 Metrical data

4.1.1 The gaṇa-s

For representing the characteristics of a given metre, a popular scheme used
by all Sanskrit authors of works on prosody is the use of the 8 gaṇs. Each
possible laghu-guru combination of three syllables (trika), namely each of the
23 possibilities LLL, LLG, LGL, LGG, GLL, GLG, GGL, GGG, is given a distinct
name (na, sa, ja, ya, bha, ra, ta, ma respectively), so that a long pattern
of laghus and gurus can be concisely stated in groups of three. This is an
excellent mnemonic and space-saving device, akin to writing in octal instead
of binary. For instance, the binary number 1101100101012 can be written
more concisely as the octal number 66258 and the translation between them
is immediately apparent (1101100101012 corresponds to 66258 and vice-
versa, by simply treating each group of three binary digits (bits) as an octal
digit, or conversely expanding each octal digit to a three-bit representation).
Similarly, the pattern GGLGGLLGLGLG of Indravaṃśa can be more concisely
expressed by the description as “ta ta ja ra”. Moreover, another mnemonic
device of unknown origin uses a string “yamātārājabhānasalagaṃ” that
traverses all the 8 gaṇas (and the names la and ga used for any “leftover”
laghus and gurus respectively), assigning them syllable weights (via vowel
lengths) such that the three syllables starting at any of the 8 consonants are
itself in the gaṇa named by that consonant.10

8http://sarit.indology.info
9http://sanskritlibrary.org

10In the modern terminology of combinatorics, this is a de Bruijn sequence.

http://sarit.indology.info
http://sanskritlibrary.org

Metrical analysis of Sanskrit verse 131

Thus we can see that the gaṇa names are a useful mnemonic and space-
saving device, and yet at the same time, from an information-theoretic
point of view, they contain absolutely no information that is not present
in the expanded string (the pattern of Ls and Gs). Moreover, for a typical
reader who is not trying to memorize the definitions of metres (either in the
GGLGGLLGLGLG form or the “ta ta ja ra”’ form), the gaṇas add no value and
serve only to further mystify and obscure the topic. Moreover they can be
misleading as to the nature of yati breaks in the metre, as the metre being
described is rarely grouped into threes, except for certain specific metres
(popularly used in stotras) such as भजुयातम ्, तोटकम ्, and िवणी. One can
as easily (and more enjoyably) learn the pattern of a metre by committing a
representative example (a good verse in that metre) to memory, rather than
the definition using gaṇas, as the author and others know from personal
experience. For these reasons, the gaṇa information is de-emphasized in the
tool described in this paper.

4.1.2 pādānta-laghu

Sanskrit poetic convention is that the very last syllable in a verse can be
laghu even if the metre requires it to be guru. Consider for instance, the
very first verse of Kālidāsa’s Meghadūta, in the Mandākrāntā metre:

kaścit kāntā-viraha-guruṇā svādhikārāt pramattaḥ
śāpenāstaṃgamita-mahimā varṣa-bhogyeṇa bhartuḥ
yakṣaś cakre janaka-tanayā-snāna-puṇyodakeṣu
snigdhacchāyā-taruṣu vasatiṃ rāmagiryāśrameṣu

Even though the Mandākrāntā requires in each pāda a final syllable that
is guru, the final syllable of the verse above is allowed to be ṣu which if
it occurred in another position (and not followed by a consonant cluster)
would be treated as a laghu syllable. A similar convention, though not
always stated as clearly in texts in prosody, more or less applies at the end
of each half (ardha or pair of pādas) of the verse (for an example, see the
kāṣṭhād agnir… verse in Śālinī from Section 1.1).

The question of such a laghu at the end of odd pādas (viṣama-pādānta-
laghu) is a thorny one, with no clear answers. Even the word of someone
like Kedārabhaṭṭa cannot be taken as final on this matter, as it needs to
hold up to actual usage and what is pleasing to the trained ear. Certainly
we see such laghus being used liberally in metres like Śloka, Upajāti and

132 Rajagopalan

Vasantatilakā. At the same time, there are metres like Śālinī where this
would be unusual. The summary from those well-versed in the metrical
tradition11 is that such laghus are best avoided (and are therefore unusual,
the works of the master poets) in yati-prabala metres, those where the yati is
prominent. This is why, Śālinī with 11 syllables to a pāda requires a stricter
observance of guru at the end of odd pādas than a metre like Vasantatilakā
with 14. As a general rule of thumb, though, such viṣama-pādānta-laghus
can be regarded as incorrect in metres longer than Vasantatilakā. It is not
clear how a computer could automatically make such subjective decisions,
so something like the idea (Melnad, Goyal, and P. M. Scharf 2015) of storing
a boolean parameter about which metres allow this option, seems desirable.
Still, the question of how that boolean parameter is to be chosen remains
open.

4.1.3 Is more data always better?

It seems natural that having data about more metres would lead to better
decisions and better results, but in practice some care is needed. A common
problem is that when there are too many metres in our database, the
likelihood of false positives increases. To see this more clearly, imagine
a hypothetical case in which every possible combination of laghu and guru
syllables was given its own name as a metre: in that case, a verse intended
to be in the metre Śārdūlavikrīḍtam, say, with even a single error, would
perfectly match some other named metre, and we would be misled as to the
truth. A specific case where this happens easily is when a user inputs a
single pāda but the system tries to treats it as a full verse. In this case, the
quarters of the input, as they are much shorter, are more likely to match
some metre accidentally. The solution of returning multiple results (a list
of results rather than a single result) alleviates this problem (cf. the idea of
list decoding from computer science).

A related problem is the over-precise naming of metres. We know that
Indravajrā and Upendravajrā differ only in the weight of the first syllable,
and that the Upajāti metre consists of free alternation between them for
the four pādas in a verse, as for this particular metre, the weight of the
first syllable does not matter too much. However, there exist theorists of
prosody who have, to each of the 24 = 16 possibilities (all the ways of
combining Indravajrā and Upendravajrā), given names like Māyā, Premā,

11Śatāvadhānī R. Ganesh, personal communication

Metrical analysis of Sanskrit verse 133

Mālā, Ṛddhiḥ and so on (A. Mishra 2007). This is not very useful to a
reader, as in such cases, the metre in question is, in essence, really more
common than such precise naming would make it seem. Velankar (Velankar
1949) even considers the name Upajāti as arising from the “displeasure” of
the “methodically inclined prosodist”.

Another issue is that data compiled from multiple works on prosody
(or sometimes even from the same source) can have inconsistencies. It
can happen that the same metre is given different names in different
sources (Velankar 1949: p. 59). This is very common with noun endings
that mark gender, such as -ā versus -aṃ, but we also see cases where
completely different names are used. It can also happen that the same
name is used for entirely different metres (see also the confusion about
Upajāti mentioned below in Section 4.4). For these reasons, instead of
storing each metre as a (name,pattern) pair as mentioned earlier, or as
the (better) (name,pattern,bool) triple (Melnad, Goyal, and P. M. Scharf
2015), it seems best to store a (pattern,bool,name, source for name) tuple.
I started naively, thinking the name of metres is objective truth, and as a
result of this project I realized that names are assigned with some degree of
arbitrariness.

Finally a couple more points: (1) There exist metres that end with laghu
syllables, and the code should be capable of handling them. (2) It is better
to keep metrical data as data files, rather than code. This was a mistake
made in the initial design of the system. Although it did not deter helpful
contributors like Dhaval Patel from contributing code-like definitions for
each metre, it is still a hindrance that is best avoided. Keeping data in data
files is language-agnostic and would allow it to be used by other tools.

Overall, however, despite these issues, on the whole the situation is not
too bad, because it is mostly a small set of metres that is used by most poets.
Although the repertoire of Sanskrit metres is vast (Deo 2007), and even the
set of commonly used metres is larger in Sanskrit than in other languages,
nevertheless, as with rāgas in music, although names can and have been
given to a great many combinations, not every mathematical possibility is
an aesthetic possibility.12

12This remark comes from Śatāvadhānī Ganesh who has pointed this out multiple times.

134 Rajagopalan

4.2 Transliteration
It appears that accepting input in various input schemes is one of the features
of the tool that users enjoy. Although the differences between various input
schemes are mostly superficial and easily learned, it appears that many
people have their preferred scheme that they would like to employ wherever
possible. These are fortunately easy for computers to handle.

As pointed out elsewhere in detail (P. M. Scharf and Hyman 2011), the
set of graphemes or phonemes one might encounter in putatively Sanskrit
input is larger than that supported by common systems of transliteration
like Harvard-Kyoto or IAST. Characters like chandrabindu and ळ will occur
in the input especially with modern poetry or verse from other languages.
The system must be capable of doing something reasonable in such cases.

A perhaps unusual choice is that the system does not currently accept
input in SLP1, even though SLP1 is used internally. The simple reason is
that no one has asked for it, and it does not seem that many people type
in SLP1. SLP1 is a great internal format, and can be a good choice for
inter-operability between separate tools, but it seems that the average user
does not prefer typing kfzRaH for कृः. Nevertheless this is a minor point
as this input method can easily be added if anyone wants it.

In an earlier paper (Melnad, Goyal, and P. M. Scharf 2015), two of the
deficiencies stated about the tool by Mishra (A. Mishra 2007) are that:

1. By supporting only Harvard-Kyoto input, that tool requires special
treatment of words with consecutive a-i or a-u vowels (such as the
word “उग”). In this tool, as Devanāgarī input is accepted, such words
can be input (besides of course by simply inserting a space).

2. That tool does not support accented input, which (Melnad, Goyal, and
P. M. Scharf 2015) do because they accept input in SLP1. In this tool,
accented input is in fact accepted if input as Devanāgarī. However,
as neither this tool nor the one by (Melnad, Goyal, and P. M. Scharf
2015) supports Vedic metre, this point seems moot: Sanskrit poetry
in classical (non-Vedic) metre is not often accompanied by accent
markers! In this tool, accent marks in Devanāgarī are accepted but
ignored.

Metrical analysis of Sanskrit verse 135

4.3 Scansion
As a coding shortcut when the program was first being written, I decided to
treat anusvāra and visarga as consonants too for the purposes of scansion,
instead of handling them in a special way. To my surprise, I have not had to
revise this and eliminate the shortcut, because in every instance, the result
of scansion is the same. I am not aware of any text on prosody treating
anusvāra and visarga as consonants, but their identical treatment is valid
from the point of view of Sanskrit prosody. This is a curious insight that
the technological constraints (or laziness) have given us!

As mentioned in earlier work (Melnad, Goyal, and P. M. Scharf 2015),
in later centuries of the Sanskrit tradition, there evolved an option of
considering certain guru syllables as laghu, as a sort of poetic licence,
in certain cases. Specifically, certain consonant clusters, especially those
containing r like pr and hr, were allowed to be treated as if they were single
consonants, at the start of a word. This rule is stated by Kedārabhaṭṭa
too, and seems to be freely used in the Telugu tradition even today. A
further trend is to allow this option everywhere, based on how “effortlessly”
or “quickly” certain consonant clusters can be pronounced, compared with
others. A nuanced understanding of this matter comes from a practising
poet and scholar of Sanskrit literature, Śatāvadhānī R. Ganesh:13 this
practice arose from the influence of Prākṛta and Deśya (regional) languages
(for instance, it is well-codified as a rule in Kannada and Telugu, under the
name of Śithila-dvitva). It was also influenced by music; Ganesh cites the
treatise चतदु डीकािशका. His conclusion is that as a conscientious poet, he
will follow poets like Kālidāsa, Bhāravi, Māgha, Śrāharṣa and Viśākhadatta
in not using this exception when composing Sanskrit, but using it sparingly
when composing in languages like Kannada where prior poets have used it
freely.

With this understanding,14 the question arises whether the system needs
to encode this exception, especially for dealing with later or modern poetry.
This could be done, but as a result of the system’s robustness to errors, in
practice this turns out to be less necessary. Any single verse is unlikely to
exploit this poetic licence in every single pāda, so the occasional usage of this

13personal communication, but see also corroboration at https://groups.google.com/
d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ

14See another summary here: https://github.com/shreevatsa/sanskrit/issues/1#
issuecomment-68502605

https://groups.google.com/d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ
https://github.com/shreevatsa/sanskrit/issues/1#issuecomment-68502605
https://github.com/shreevatsa/sanskrit/issues/1#issuecomment-68502605
https://groups.google.com/d/msg/bvparishat/ya1cGLuhc14/EkIqH9NbgawJ

136 Rajagopalan

exception does not prevent the metre from being detected. The only caveat
is that this already counts as an error, so verses that exploit this exception
would have a slightly lower robustness to further additional errors.

4.4 Identification
It is not enough for a verse to have the correct scansion (the correct pattern
of laghu and guru syllables), for it to be a perfect specimen of a given
metre. There are additional constraints, such as yati: because a pause
is indicated at each yati-sthāna (caesura), a word must not cross such
a boundary, although separate lexical components of a compound word
(samāsa) may. Previously (Melnad, Goyal, and P. M. Scharf 2015), an
approach has been suggested of using a text segmentation tool such as the
Sanskrit Heritage Reader (Huet 2005; Huet and Goyal 2013) for detecting
when such a constraint is violated. This would indeed be ideal, but the tool
being described in this paper alleviates the problem by displaying the user’s
input verse aligned to the metre, with each yati-sthāna indicated. Thus, any
instance of a word crossing a yati boundary will be apparent in the display.

Note that we can provide information on all kinds of Upajāti, even
if they are not explicitly added to our database, a problem mentioned
previously (Melnad, Goyal, and P. M. Scharf 2015). Upajāti just means
“mixture”; the common upajāti of Indravajrā and Upendravajrā, as a metre,
has nothing to do with the upajāti of Vaṃśastha and Indravaṃśa (Velankar
1949). In fact, the latter is sometimes known by the more specific name of
Karambajāti,15 among other names. Whenever an Upajāti of two different
metres is used and input correctly, each of the two metres will be recognized
and shown to the user, because different pādas will match different patterns
in our index. So without us doing any special work of adding all the kinds
of Upajāti to the data, the user can see in any given instance that their
verse contains elements of both metres, and in exactly what way. Of course,
adding the “mixed” metre explicitly to the data, would be more informative
to the user, if the mixture is a common one.

4.5 Display
Once a metre is identified, for some users, telling the user the name of the
metre may be enough. However, if we envision this tool being used by anyone

15Śatāvadhān R. Ganesh, personal communication

Metrical analysis of Sanskrit verse 137

reading any Sanskrit verse (such as Devadatta from Section 1.3), then for
many users, being told the name of the metre (or even the metre’s pattern)
carries mainly the information that the verse is in some metre, but does not
substantially improve the reader’s enjoyment of the verse. Seeing the verse
aligned to the metre, with line breaks introduced in the appropriate places
and yati locations highlighted, helps a great amount. What would help the
most, however, is a further introduction to the metre, along with familiar
examples that happen to be in the same metre, and audio recordings of
typical ways of reciting the metre.

The tool does this, for popular metres (see Figure 1), drawing on
another resource (Ganesh 2013). In these audio recordings made in 2013,
Śatāvadhānī R. Ganesh describes several popular metres, with well-chosen
examples (most recited from memory and some composed extempore for the
sake of the recordings). Some interesting background such as its usage in the
tradition—a brief “biography” of the metre—is also added for some metres.
Although they were not created for the sake of this tool, it was the same
interest in Sanskrit prosody that led both to the creation of this tool and to
my request for these recordings. Showing the user’s verse accompanied by
examples of recitation of other verses in the same metre helps the user read
aloud and savour the verse they input.

Incidentally, an introduction to metres via popular examples and
accompanying audio recordings is also the approach taken by the book
Chandovallarī (S. Mishra 1999). The examples chosen are mostly from the
stotra literature, which are most likely to be familiar to an Indian audience.
In this way it can complement the recordings mentioned in the previous
paragraph, in which the examples were often chosen for their literary quality
or illustrative features.

4.6 Getting feedback from users
The main lesson I learned from building this system was the value of making
things accessible to as many users as possible, by removing as many barriers
as possible. Write systems that are “liberal” in what they accept, but are
nevertheless conservative enough to avoid making errors (Postel’s law).

There exist users who may not have much computer-science or
programming knowledge, but are nevertheless scholars who are experts
in a specific subject. For example, India’s tech penetration is low; even
many Sanskrit scholars aren’t trained or inclined to enter verse in standard

138 Rajagopalan

transliteration formats. The very fact that they are visiting your tool and
using it means that they constitute a self-selecting sample. It would be
a shame not to use their expertise. Their contributions and suggestions
can help improve the system. In the case of this tool, the link to GitHub
discussion pages, and making it easy with a quick link to report issues
encountered during any particular interaction, have generated a lot of
improvements, both in terms of usability and correctness. A minor example
of a usability improvement is setting things up so that the text area is
automatically focused when a user visits the web page—this is trivial to set
up, but not something that had occurred as something desirable to do. In
this case a user asked for it.

Though user feedback guided many design decisions, gathering and
acting on more of the user feedback would lead to further improvements.

5 Conclusions and future work
This paper has described a tool for metre recognition that takes various
measures to be useful to users as much as possible. In this section, we
list current limitations of the tool and improvements that can be (and are
planned to be) made.

In terms of transliteration, though there are many transliteration
schemes supported, even the requirement to be in a specific transliteration
scheme is too onerous—instead, the tool must let the user type, and in real-
time display its understanding of the user’s input, while offering convenient
input methods (such as a character picker16) that do not require prior
knowledge of how to produce specific characters. Similarly on the output
side, a user’s preferred script for reading Sanskrit (which may not be the
same as their input script) should be used and remembered for future
sessions, so that for instance a user can completely use the tool and see
all Sanskrit text in the Kannada script. There may even exist users who
prefer to read everything in SLP1!

Very few mātrā metres are currently supported (only members of the
Āryā family have been added). There are many simple mātrā metres used
in stotras, such a metre consisting of alternating groups of 3 and 4 mātrās.
More examples for each metre, such as from Chandovallarī (S. Mishra 1999),
would help.

16For instance, https://r12a.github.io/pickers/devanagari

https://r12a.github.io/pickers/devanagari

Metrical analysis of Sanskrit verse 139

The program is a monolithic application. It should be made more
modular, and packaged into libraries for distribution, so that other software
can easily incorporate the same user-friendly features. Similarly, in addition
to the human interface, providing an API would make this code usable from
another website or application. Another limitation is that the program
requires a dedicated server to run; if rewritten to run entirely in the browser
it could be packaged as a browser extension, so that any Sanskrit verse on
any web page can be quickly queried about and reformatted in a metrically
clear form. The automatic inference of the transliteration scheme and other
aspects of the user’s intention, though a user-friendly feature, might have
errors occasionally, so the program would be improved by allowing them to
be indicated manually when desired.

Finally, the most promising avenue for future work is running this tool
on large texts rather than for one verse at a time, which can uncover
many insights about prosody. For instance, the most common Anuṣṭubh
(Śloka) metre, the work-horse of Sanskrit literature and beloved of the
epic poets of the Rāmāyaṇa and the Mahābhārata, is still difficult to
define clearly. The naive definition, that the odd pādas match the regular
expression “....LGG.” and the even pādās match “....LGL.”, is found
insufficient: there are both more and fewer constraints in practice. It is
not the case that all 216 choices for the first four syllables are acceptable,
nor is it the case that every acceptable śloka satisfies even these constraints.
G. S. S. Murthy (Murthy 2003) surveys and summarizes the literature on
this metre and concludes with some perceptive remarks:

It is indeed surprising that anuṣṭup has remained ill-defined
for so long. […] If anuṣṭup is being used for thousands of
years in saṃskṛt literature without a precise definition having
been spelt out till date, it must be simply because of the fact
that the internal rhythm of anuṣṭup becomes ingrained in the
mind of a student of saṃskṛt at an early age due to constant
and continuous encounter with anuṣṭup and when one wants
to compose a verse in anuṣṭup, one is guided by that rhythm
intuitively.

It is now almost within reach, by running a tool like this on a large corpus
consisting of the Mahābhārata, Rāmāyaṇa and other large works, to arrive
at a descriptive definition of śloka based on the verses actually found in the

140 Rajagopalan

literature, so that we can make explicit the rules that have been implicitly
adhered to by the natural poets.

Acknowledgements

I am indebted to the poet and scholar Śatāvadhānī R. Ganesh for
encouraging my interest in Sanskrit (and other Indian) prosody. It is his
intimate love of metres (reminding me of the story of the mathematician
Ramanujan for whom every positive integer was a personal friend), that led
me to the realization that an understanding of metre greatly enriches the
joy of poetry. Dhaval Patel contributed metrical data, and raised points
about nuances, from Vṛttaratnākara (some still unresolved). Sridatta A
pointed out some more. I thank Vishvas Vasuki for being a heavy user and
pointing out many bugs and suggestions, and for initiating the sanskrit-
programmers mailing list where this project began. Finally, I thank my wife
Chitra Muthukrishnan for supporting me during this work, both technically
and otherwise, and for reviewing drafts of this article.

References
Deo, Ashwini S. 2007. “The metrical organization of Classical Sanskrit

verse.” Journal of linguistics 43.1: 63–114.
Ganesh, Shatavadhani R. 2013. Sanskrit Metres (A playlist with a series of

audio recordings containing recitation and information about popular
metres). url: https : / / www . youtube . com / playlist ? list =
PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS.

Huet, Gérard. 2005. “A functional toolkit for morphological and phonolog-
ical processing: application to a Sanskrit tagger.” Journal of Functional
Programming 15.4: 573–614.

Huet, Gérard and Pawan Goyal. 2013. “Design of a lean interface for Sanskrit
corpus annotation.” Proceedings of ICON 2013, the 10th International
Conference on NLP: 177–86.

Melnad, Keshav, Pawan Goyal, and Peter M. Scharf. 2015. “Identification of
meter in Sanskrit verse.” In: Selected papers presented at the seminar on
Sanskrit syntax and discourse structures, 13–15 June 2013, Universite
Paris Diderot, with a bibliography of recent research by Hans Henrich
Hock. Providence: The Sanskrit Library, 325–346.

Mishra, Anand. 2007. Sanskrit metre recognizer. url: http://sanskrit.
sai.uni-heidelberg.de/Chanda/.

Mishra, Sampadananda. 1999. Chandovallari: Handbook of Sanskrit prosody.
Sri Aurobindo Society.

Murthy, G. S. S. 2003. “Characterizing Classical Anuṣṭup: A Study in
Sanskrit Prosody.” Annals of the Bhandarkar Oriental Research Institute
84: 101–15. issn: 03781143.

—. 2003? Maatraa5d.java. url: https://github.com/sanskrit-coders/
sanskritnlpjava/tree/master/src/main/java/gssmurthy.

Ollett, Andrew. 2012. “Moraic Feet in Prakrit Metrics: A Constraint-Based
Approach.” Transactions of the Philological Society 110.12: 241–282.

Scharf, Peter. 2016. “Sanskrit Library conventions of digital representation
and annotation of texts, lexica, and manuscripts.” In: ICON 2016
Workshop on bridging the gap between Sanskrit computational linguistics
tools and management of Sanskrit digital libraries 17–20 December 2016,
IIT-BHU.

141

https://github.com/sanskrit-coders/sanskritnlpjava/tree/master/src/main/java/gssmurthy
https://www.youtube.com/playlist?list=PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS
https://github.com/sanskrit-coders/sanskritnlpjava/tree/master/src/main/java/gssmurthy
https://www.youtube.com/playlist?list=PLABJEFgj0PWVXr2ERGu2xtoSXrNdBs5xS
http://sanskrit.sai.uni-heidelberg.de/Chanda/
http://sanskrit.sai.uni-heidelberg.de/Chanda/

142 17th WSC:SCL

Scharf, Peter M. and Malcolm D. Hyman. 2011. Linguistic Issues in
Encoding Sanskrit. The Sanskrit Library, Providence and Motilal
Banarsidass, Delhi. url: http://sanskritlibrary.org/Sanskrit/
pub/lies_sl.pdf.

Smith, John. 1998? sscan (part of sktutils.zip). url: http : / / bombay .
indology.info/software/programs/index.html.

Velankar, H. D. 1949. Jayadāman: A collection of ancient texts on Sanskrit
Prosody and A Classified List of Sanskrit Metres with an Alphabetical
Index. Haritoṣamālā, pp. 14–15.

http://sanskritlibrary.org/Sanskrit/pub/lies_sl.pdf
http://bombay.indology.info/software/programs/index.html
http://bombay.indology.info/software/programs/index.html
http://sanskritlibrary.org/Sanskrit/pub/lies_sl.pdf

	A user-friendly tool for metrical analysis of Sanskrit verse

